ShuangChenYue ShuangChenYue
首页
  • Cpp之旅
  • Cpp专栏
  • Effective_CPP
  • muduo网络库
  • Unix环境高级编程
  • Cpp提高编程
  • 计算机网络
  • 操作系统
  • 数据结构
  • Linux
  • 算法
  • 基础篇
  • MySql
  • Redis
  • 电子嵌入式通信协议
  • 深入浅出SSD
  • 文件系统
  • 汇编语言
  • STM32
  • 随笔(持续更新)
  • Git知识总结
  • Git 创建删除远程分支
  • nvm使用小结
  • 虚拟机固定 IP 地址
  • Shell 脚本学习笔记
  • VScode 插件 CodeGeeX 使用教程
  • KylinV10 将项目上传至 Github教程
  • KylinV10 安装 MySQL 教程(可防踩雷)
  • kylinV10-SP1 安装 QT
  • 高并发内存池
  • USBGUARD 项目编译环境配置
  • Power_Destory 项目
  • U 盘清除工具编译教程
  • 个人博客代码推送教程
  • HTML与CSS
  • JS学习
  • Vue3入门
  • Vue3进阶
  • 黑马Vue3
  • MFC编程随记
  • MFC实现ini配置文件的读取
  • MFC实现点击列表头排序
  • 贴图法美化Button按钮
  • 如何高效阅读嵌入式项目代码
  • NAND Flash
  • ARM 处理器
  • 嵌入式基础知识-存储器
  • 闪存存储和制造技术概述
  • 芯片IO驱动力
  • 主流先进封装技术介绍
  • 虎牙C++技术面经
  • 金山一面复习
  • 完美世界秋招 C++ 游戏开发面经(Cpp部分)
  • 博客搭建
  • 网站收藏箱
首页
  • Cpp之旅
  • Cpp专栏
  • Effective_CPP
  • muduo网络库
  • Unix环境高级编程
  • Cpp提高编程
  • 计算机网络
  • 操作系统
  • 数据结构
  • Linux
  • 算法
  • 基础篇
  • MySql
  • Redis
  • 电子嵌入式通信协议
  • 深入浅出SSD
  • 文件系统
  • 汇编语言
  • STM32
  • 随笔(持续更新)
  • Git知识总结
  • Git 创建删除远程分支
  • nvm使用小结
  • 虚拟机固定 IP 地址
  • Shell 脚本学习笔记
  • VScode 插件 CodeGeeX 使用教程
  • KylinV10 将项目上传至 Github教程
  • KylinV10 安装 MySQL 教程(可防踩雷)
  • kylinV10-SP1 安装 QT
  • 高并发内存池
  • USBGUARD 项目编译环境配置
  • Power_Destory 项目
  • U 盘清除工具编译教程
  • 个人博客代码推送教程
  • HTML与CSS
  • JS学习
  • Vue3入门
  • Vue3进阶
  • 黑马Vue3
  • MFC编程随记
  • MFC实现ini配置文件的读取
  • MFC实现点击列表头排序
  • 贴图法美化Button按钮
  • 如何高效阅读嵌入式项目代码
  • NAND Flash
  • ARM 处理器
  • 嵌入式基础知识-存储器
  • 闪存存储和制造技术概述
  • 芯片IO驱动力
  • 主流先进封装技术介绍
  • 虎牙C++技术面经
  • 金山一面复习
  • 完美世界秋招 C++ 游戏开发面经(Cpp部分)
  • 博客搭建
  • 网站收藏箱
  • 网络

  • 操作系统

  • 数据结构

  • 算法

    • 两数之和
    • 回文数
    • 最长公共前缀
    • 三数之和
      • 题目:
      • 示例:
      • 解题:
        • 方法一:排序+双指针
        • 去重逻辑的思考
        • a的去重
        • b与c的去重
        • 代码实现:
        • 视频讲解:
    • 删除有序数组中的重复项
    • 最大子数组和
    • x 的平方根
    • 爬楼梯
    • 对称二叉树
    • 二叉树的最大深度
    • LCR寻找文件副本
    • 买卖股票的最佳时机
    • LCR图书整理 II
    • 只出现一次的数字
    • LCR 训练计划 II
    • 环形链表
    • LRU 缓存
    • 反转字符串中的单词
    • LCR 破冰游戏
    • 反转链表
    • 翻转二叉树
    • 回文链表
    • 移动零
    • 最长回文串
    • 汉明距离
    • 把二叉搜索树转换为累加树
    • 最短无序连续子数组
    • 合并二叉树
    • 二分查找
    • 链表的中间结点
    • 有序数组的平方
    • 找到小镇的法官
  • Linux

  • 计算机基础
  • 算法
霜晨月
2023-12-28
目录

三数之和

# 15. 三数之和 (opens new window)

# 题目:

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请

你返回所有和为 0 且不重复的三元组。

注意: 答案中不可以包含重复的三元组。

# 示例:

示例 1:

输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
1
2
3
4
5
6
7
8

示例 2:

输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
1
2
3

示例 3:

输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
1
2
3

提示:

  • 3 <= nums.length <= 3000
  • -10^5^ <= nums[i] <= 10^5^

# 解题:

# 方法一:排序+双指针

这道题相较于两数之和多了去重的部分,所以不适合使用哈希法来解题,而这道题不要求返回下标,所以可以考虑对数组进行排序。

# 去重逻辑的思考

# a的去重

说到去重,其实主要考虑三个数的去重。 a, b ,c, 对应的就是 nums[i],nums[left],nums[right]

a 如果重复了怎么办,a 是 nums 里遍历的元素,那么应该直接跳过去。

但这里有一个问题,是判断 nums[i] 与 nums[i + 1]是否相同,还是判断 nums[i] 与 nums[i-1] 是否相同。这其实不一样如果我们的写法是 这样:

/*那我们就把 三元组中出现重复元素的情况直接pass掉了。 例如 {-1, -1 ,2} 这组数据,当遍历到第一个 -1 的时候,判断 下一个也是 -1,那这组数据就 pass 了。*/
if (nums[i] == nums[i + 1]) { // 去重操作
    continue;
}
1
2
3
4

我们要做的是 不能有重复的三元组,但三元组内的元素是可以重复的!

所以这里是有两个重复的维度。

那么应该这么写:

/*这么写就是当前使用 nums[i],我们判断前一位是不是一样的元素,在看 {-1, -1 ,2} 这组数据,当遍历到 第一个 -1 的时候,只要前一位没有 -1,那么 {-1, -1 ,2} 这组数据一样可以收录到 结果集里。*/
if (i > 0 && nums[i] == nums[i - 1]) {
    continue;
}
1
2
3
4
# b与c的去重

如果去重的逻辑多加了对 right 和left 的去重:(代码中注释部分)

while (right > left) {
    if (nums[i] + nums[left] + nums[right] > 0) {
        right--;
        // 去重 right
        while (left < right && nums[right] == nums[right + 1]) right--;
    } else if (nums[i] + nums[left] + nums[right] < 0) {
        left++;
        // 去重 left
        while (left < right && nums[left] == nums[left - 1]) left++;
    } else {
    }
}
1
2
3
4
5
6
7
8
9
10
11
12

但细想一下,这种去重其实对提升程序运行效率是没有帮助的。

拿 right 去重为例,即使不加这个去重逻辑,依然根据 while (right > left) 和 if (nums[i] + nums[left] + nums[right] > 0) 去完成 right-- 的操作。

多加了 while (left < right && nums[right] == nums[right + 1]) right--; 这一行代码,其实就是把 需要执行的逻辑提前执行了,但并没有减少 判断的逻辑。

最直白的思考过程,就是 right 还是一个数一个数的减下去的,所以在哪里减的都是一样的。

所以这种去重是可以不加的。 仅仅是把去重的逻辑提前了而已。

# 代码实现:

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        // 找出a + b + c = 0
        // a = nums[i], b = nums[left], c = nums[right]
        for (int i = 0; i < nums.size(); i++) {
            // 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
            if (nums[i] > 0) {
                return result;
            }
            // 错误去重a方法,将会漏掉-1,-1,2 这种情况
            /*
            if (nums[i] == nums[i + 1]) {
                continue;
            }
            */
            // 正确去重a方法
            if (i > 0 && nums[i] == nums[i - 1]) {
                continue;
            }
            int left = i + 1;
            int right = nums.size() - 1;
            while (right > left) {
                // 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
                /*
                while (right > left && nums[right] == nums[right - 1]) right--;
                while (right > left && nums[left] == nums[left + 1]) left++;
                */
                if (nums[i] + nums[left] + nums[right] > 0) right--;
                else if (nums[i] + nums[left] + nums[right] < 0) left++;
                else {
                    result.push_back(vector<int>{nums[i], nums[left], nums[right]});
                    // 去重逻辑应该放在找到一个三元组之后,对 b 和 c 去重
                    while (right > left && nums[right] == nums[right - 1]) right--;
                    while (right > left && nums[left] == nums[left + 1]) left++;

                    // 找到答案时,双指针同时收缩
                    right--;
                    left++;
                }
            }

        }
        return result;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

复杂度分析

  • 时间复杂度:O(N^2^),其中 N 是数组 nums 的长度。
  • 空间复杂度:O(1)。

# 视频讲解:

梦破碎的地方!| LeetCode:15.三数之和_哔哩哔哩_bilibili (opens new window)

上次更新: 2024/6/3 14:54:44
最长公共前缀
删除有序数组中的重复项

← 最长公共前缀 删除有序数组中的重复项→

Theme by Vdoing | Copyright © 2023-2024 霜晨月
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式