ShuangChenYue ShuangChenYue
首页
  • Cpp之旅
  • Cpp专栏
  • Effective_CPP
  • muduo网络库
  • Unix环境高级编程
  • Cpp提高编程
  • 计算机网络
  • 操作系统
  • 数据结构
  • Linux
  • 算法
  • 基础篇
  • MySql
  • Redis
  • 电子嵌入式通信协议
  • 深入浅出SSD
  • 文件系统
  • 汇编语言
  • STM32
  • 随笔(持续更新)
  • Git知识总结
  • Git 创建删除远程分支
  • nvm使用小结
  • 虚拟机固定 IP 地址
  • Shell 脚本学习笔记
  • VScode 插件 CodeGeeX 使用教程
  • KylinV10 将项目上传至 Github教程
  • KylinV10 安装 MySQL 教程(可防踩雷)
  • kylinV10-SP1 安装 QT
  • 高并发内存池
  • USBGUARD 项目编译环境配置
  • Power_Destory 项目
  • U 盘清除工具编译教程
  • 个人博客代码推送教程
  • HTML与CSS
  • JS学习
  • Vue3入门
  • Vue3进阶
  • 黑马Vue3
  • MFC编程随记
  • MFC实现ini配置文件的读取
  • MFC实现点击列表头排序
  • 贴图法美化Button按钮
  • 如何高效阅读嵌入式项目代码
  • NAND Flash
  • ARM 处理器
  • 嵌入式基础知识-存储器
  • 闪存存储和制造技术概述
  • 芯片IO驱动力
  • 主流先进封装技术介绍
  • 虎牙C++技术面经
  • 金山一面复习
  • 完美世界秋招 C++ 游戏开发面经(Cpp部分)
  • 博客搭建
  • 网站收藏箱
首页
  • Cpp之旅
  • Cpp专栏
  • Effective_CPP
  • muduo网络库
  • Unix环境高级编程
  • Cpp提高编程
  • 计算机网络
  • 操作系统
  • 数据结构
  • Linux
  • 算法
  • 基础篇
  • MySql
  • Redis
  • 电子嵌入式通信协议
  • 深入浅出SSD
  • 文件系统
  • 汇编语言
  • STM32
  • 随笔(持续更新)
  • Git知识总结
  • Git 创建删除远程分支
  • nvm使用小结
  • 虚拟机固定 IP 地址
  • Shell 脚本学习笔记
  • VScode 插件 CodeGeeX 使用教程
  • KylinV10 将项目上传至 Github教程
  • KylinV10 安装 MySQL 教程(可防踩雷)
  • kylinV10-SP1 安装 QT
  • 高并发内存池
  • USBGUARD 项目编译环境配置
  • Power_Destory 项目
  • U 盘清除工具编译教程
  • 个人博客代码推送教程
  • HTML与CSS
  • JS学习
  • Vue3入门
  • Vue3进阶
  • 黑马Vue3
  • MFC编程随记
  • MFC实现ini配置文件的读取
  • MFC实现点击列表头排序
  • 贴图法美化Button按钮
  • 如何高效阅读嵌入式项目代码
  • NAND Flash
  • ARM 处理器
  • 嵌入式基础知识-存储器
  • 闪存存储和制造技术概述
  • 芯片IO驱动力
  • 主流先进封装技术介绍
  • 虎牙C++技术面经
  • 金山一面复习
  • 完美世界秋招 C++ 游戏开发面经(Cpp部分)
  • 博客搭建
  • 网站收藏箱
  • 网络

  • 操作系统

  • 数据结构

  • 算法

    • 两数之和
    • 回文数
    • 最长公共前缀
    • 三数之和
    • 删除有序数组中的重复项
    • 最大子数组和
    • x 的平方根
    • 爬楼梯
    • 对称二叉树
    • 二叉树的最大深度
      • 题目:
      • 示例:
      • 解题:
        • 方法一:深度优先搜索
        • 方法二:广度优先遍历
    • LCR寻找文件副本
    • 买卖股票的最佳时机
    • LCR图书整理 II
    • 只出现一次的数字
    • LCR 训练计划 II
    • 环形链表
    • LRU 缓存
    • 反转字符串中的单词
    • LCR 破冰游戏
    • 反转链表
    • 翻转二叉树
    • 回文链表
    • 移动零
    • 最长回文串
    • 汉明距离
    • 把二叉搜索树转换为累加树
    • 最短无序连续子数组
    • 合并二叉树
    • 二分查找
    • 链表的中间结点
    • 有序数组的平方
    • 找到小镇的法官
  • Linux

  • 计算机基础
  • 算法
霜晨月
2023-12-01
目录

二叉树的最大深度

# 104. 二叉树的最大深度 (opens new window)

# 题目:

给定一个二叉树 root ,返回其最大深度。

二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。

# 示例:

示例 1:

img

输入:root = [3,9,20,null,null,15,7]
输出:3
1
2

示例 2:

输入:root = [1,null,2]
输出:2
1
2

提示:

  • 树中节点的数量在 [0, 104] 区间内。
  • -100 <= Node.val <= 100

# 解题:

# 方法一:深度优先搜索

如果我们知道了左子树和右子树的最大深度 l 和 r,那么该二叉树的最大深度即为 max(l,r)+1

而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在 O(1) 时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。

一定要理解其中的过程才用这种方法!

class Solution {
public:
	int maxDepth(TreeNode* root) {
        if(root == nullptr) return 0;
        return max(maxDepth(root->left), maxDepth(root->right)) + 1;
    }
}
1
2
3
4
5
6
7

可调试的代码

#include <iostream>
#include <algorithm>

// 二叉树节点定义
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
	int maxDepth(TreeNode* root) {
        if(root == nullptr) return 0;
        return std::max(maxDepth(root->left), maxDepth(root->right)) + 1;
    }
}

int main() {
    // 创建一棵示例二叉树
    TreeNode* root = new TreeNode(3);
    root->left = new TreeNode(9);
    root->right = new TreeNode(20);
    root->right->left = new TreeNode(15);
    root->right->right = new TreeNode(7);

    // 创建 Solution 对象
    Solution solution;
    // 计算二叉树的最大深度
    int depth = solution.maxDepth(root);
    // 输出结果
    std::cout << "二叉树的最大深度: " << depth << std::endl;
    return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

复杂度分析

  • 时间复杂度:O(n),其中 n 为二叉树节点的个数。每个节点在递归中只被遍历一次。

  • 空间复杂度:O(height),其中 height 表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。

# 方法二:广度优先遍历

使用广度优先搜索(BFS)解决这个问题的思路是通过层次遍历二叉树,每一层结束后深度加 1,直到遍历到最后一层。

  1. 初始化: 创建一个队列 Q 用于层次遍历,将根节点入队,同时初始化深度 ans 为 0。

  2. 循环: 使用一个外层循环,不断处理队列中的节点,每个外层循环代表一层的遍历。

    • a. 在外层循环开始前,通过 int sz = Q.size(); 记录当前队列的大小,即当前层的节点数。

    • b. 使用一个内层循环,将当前层的节点逐个出队,同时将它们的左右子节点(如果存在)入队。

    • c. 在内层循环结束后,通过 sz -= 1; 将当前层的节点数减 1,直到当前层的节点全部处理完。

    • d. 在外层循环结束后,通过 ans += 1; 将深度加 1,表示已经处理完一层。

  3. 返回结果: 最终返回深度 ans。

这样,通过层次遍历,每次处理完一层的节点后深度加 1,直到遍历到最后一层,就能得到整个二叉树的最大深度。

class Solution {
public:
    int maxDepth(TreeNode* root) {
        if (root == nullptr) return 0;
        queue<TreeNode*> Q;
        Q.push(root);
        int ans = 0;
        while (!Q.empty()) {
            int sz = Q.size();
            while (sz > 0) {
                TreeNode* node = Q.front();Q.pop();
                if (node->left) Q.push(node->left);
                if (node->right) Q.push(node->right);
                sz -= 1;
            }
            ans += 1;
        } 
        return ans;
    }
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

复杂度分析

  • 时间复杂度:O(n),其中 n 为二叉树的节点个数。与方法一同样的分析,每个节点只会被访问一次。

  • 空间复杂度:此方法空间的消耗取决于队列存储的元素数量,其在最坏情况下会达到 O(n)。

上次更新: 2024/6/3 14:54:44
对称二叉树
LCR寻找文件副本

← 对称二叉树 LCR寻找文件副本→

Theme by Vdoing | Copyright © 2023-2024 霜晨月
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式